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Summary Lecture 4

Semiconductor physics and light-matter interaction

From epitaxy to 
deformation and 
their link to the

energy gap
Stacking new types of atoms
layer by layer on a substrate 
causes deformation due to 
lattice-mismatch.
We study:
1. Deformation and stress,
2. And their impact at the

level of the band gap.
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Summary Lecture 4

Semiconductor physics and light-matter interaction

Hooke’s law provides a link between deformation and stress through elastic 
constants, while the deformation potentials and elastic constants contribute to 
the strain Hamiltonian.

(1)
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Practical use of Hooke’s law:
Relation between in-plane (//) and out of 
plane () deformation ([001] case for a cubic
system)
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The control of the conductivity is achieved by incorporating exogen atomic species in the crystal:
• donor species: provide at least 1 electron to the lattice
• acceptor species: trap at least 1 electron of the lattice
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Donors and acceptors

Doped semiconductor

Undoped semiconductor
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Can you explain qualitatively why the concept of doping is valid for both direct and 
indirect bandgap semiconductors? 
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SPSiAl

SeAsGeGaZn
TeSbSnInCd

Donors/Acceptors for Si and Ge, and GaAs?
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Donors and acceptors



Amphoteric properties of silicon

Cambridge Univ.
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Donors and acceptors

Cationic vs anionic sites!



• Hydrogenic model
2 2

*
0 r2 4

p e
m r 

  

Coulomb interaction between the nucleus and the electron  similar situation to the one existing 
in the H atom, except that this occurs in the crystal. This is accounted for by introducing the 
dielectric constant of the medium  mean field treatment ( effective mass theory for 
the present case)
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The eigenenergies are then given by:

The ionization energy of a donor corresponds to the difference between the lowest energy level (n = 1) 
and the conduction band level where the electron is free to move in the crystal lattice (the equivalent 
situation can be transposed to the case of acceptors)
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Binding energy

“Mean field correction term”

Bohr radius of the hydrogen atom



• The binding energy (or ionization energy) is strongly reduced with respect to the case of the 
H atom due to dielectric screening effects in the crystal (r > 10)

• In this model, the binding energy is independent of the impurity species. The relevant 
parameter is the effective mass of free carriers in the semiconductor. This model will depict 
the behavior of shallow donors and acceptors.

BiSbAsP Semiconductors

9.612.712Ge

69394944Si

Remark: Bi  does not follow the general trend (failure of the hydrogenic model)
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Experimental binding energies (in meV)
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Binding energy
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B *
r

a a
e m m
 with m* =       m0,    the effective reduced mass and a0 the 

Bohr radius of the H atom (0.53 Å)

aB = 24 Å in silicon

aB
The electron is delocalized over several
crystal unit cells

This description is valid only if the impurity is
not ionized (i.e., usually at low temperature)
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Bohr radius of an impurity

“Mean field correction term”
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• Relatively small binding energy for most of the semiconductors
 full ionization expected at RT

• No longer the case for wide bandgap semiconductors (e.g., GaN, diamond)
Note, however, that the GaN:Mg acceptor level positioned 150-200 meV
above the VB maximum can still be described using the effective-mass 
approximation

• When the impurity concentration increases  formation of an impurity 
band due to wavefunction overlap
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Donors and acceptors



High concentration  interaction between dopant wavefunctions

E

ED

Band tailing effect
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Donors and acceptors

k



The conductivity of a semiconductor critically depends on the free carrier population
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Conductivity

Intrinsic conductivity

Extrinsic conductivity



Density of states
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Density of states in the VB and CB
 number of states of different energies available for carriers

!
It only depends on the energy

The temperature is responsible for the band filling

Energy

Remarks:

• 2 electrons of opposite spin per level at most

• at T = 0 K, no carriers in the CB
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Density of states in the VB and the CB



1D: linear chain of N atoms  N values of k between -/a and +/a, separated by 2/Na

3D:  to each k value corresponds a volume in reciprocal space Vr = (2/Na)3, or Vr = 83/V, 
with V=N3a3 the volume of the crystal in real space

Density of states for the electrons in k-space:
• density of states in the reciprocal space  1/Vr
• density of states in the reciprocal space per unit volume

 [1/Vr] / crystal volume (V) = (V/83)/V = 1/83

The density of states is constant over each k interval

However, the density of states over each energy interval increases due to the quadratic
relation between E and k

k  2n
Na
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Density of states



Expression valid nearby an energy band extremum only
(parabolic band approximation)

Density of states as a function of E



How many states are packed in a sphere of radius k?

N3D(E) = Vsphere x DOS per unit volume x 2 (spins 1/2)

= 4/3 k3 x 1/83 x 2

= 
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Density of states
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Density of states per energy unit at energy E  dN(E)/dE

• 3D density of states (DOS) per energy unit varies as the square root of E
• 3D DOS per energy unit varies as the effective mass with the exponent 3/2

E

dN
/d

E

Exercise: calculate the DOS per energy unit for the 2D and 1D cases (series)

E

dN
/d

E

E
dN

/d
E
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Density of states per energy unit
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Electrons and holes obey the Fermi-Dirac distribution (fermions)

The probability that an energy state E is filled by 1 electron at a temperature T is given by the 
Fermi-Dirac distribution:

( )/

1( )
1 F BE E k Tf E

e 


• EF is the Fermi level  at T = 0 K, this is the highest energy level, which is occupied

• EF is also the chemical potential 

• EF corresponds to a certain energy for which f(EF) = ½ whatever the temperature
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Band filling



Illustrative example
At 300 K, for E – EF = 0.05 eV  f(E) = 0.12

for E – EF = 7.5 eV  f(E) = 10–129

E. Fermi (1901-1954)

Fermi-Dirac distribution

P. A. M. Dirac (1902-1984)
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Band filling

Note that f(E) = 0.5 when E = EF whatever T(K) Named after Fermi and Dirac who derived 
this distribution independently in 1926!

T = 0 K 
Heaviside step
function



In the CB, the density of electrons at an energy E per unit energy is given by the product of the 
DOS c(E) by the occupation probability fc(E) 

nc(E) = fc(E)c(E)

In the VB, the density of holes writes similarly considering the occupation probability fv(E) of an 
empty state

nv(E) = fv(E)v(E) = [1-fc(E)]v(E)

The total concentration of electrons (holes) in the CB (VB) is obtained by integrating the carrier 
density nc(v) over the bands

   
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Band filling

i.e., fc(E)+fv(E) = 1



The Fermi level usually lies close to mid-gap for undoped and perfect
semiconductors

24

fv(E)fc(E)

Semiconductor physics and light-matter interaction

Band filling

ncnv
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Green 
line:
Density 
of 
states

Blue line:
Fermi-
Dirac 
distribution

Hatched 
areas:
Occupied 
states

Metal InsulatorSemiconductor
Semiconductor physics and light-matter interaction

Insulator-metal-semiconductor

• What dictates whether we are dealing 
with an insulator or a semiconductor is 
not so much the value of the bandgap 
than the ability to modify the 
conductivity/resistivity through the 
introduction of exogen species

• It is understood that those dopants will 
allow to tune in a controllable manner the 
position of the Fermi level toward the 
valence or the conduction bands

• As an illustration, AlN, whose bandgap is 
~6.1-6.2 eV, is a semiconductor!
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Non-degenerate semiconductor  the Fermi level lies within the bandgap, and 
is generally close to the mid-gap

Then it comes |E-EF| >> kBT (300 K: kBT  25 meV to be compared to Eg/2 > 500 meV
(see, e.g., the case of Si, GaAs, GaN, etc.))

 Boltzmann approximation (i.e., the carrier number is low enough so that 
Pauli exclusion principle does not apply). The occupancy statistics becomes:
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Non-degenerate semiconductors

“Classical 
regime”

Occupancy statistics

Chemical potential
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One then integrates using
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Nc(v) are the effective density of states
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Non-degenerate semiconductors
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Effective density of states  a band can be described by a discrete level with a
concentration Nc and filled with a probability exp[-(Ec-EF)/kBT]

NV (1019 cm-3)NC (1019 cm-3)

1.02.8Si
0.41Ge
1.20.04GaAs

Effective density of states (Nc(v)) at 300 K for different semiconductors
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Non-degenerate semiconductors


